Technical Information

Electrochemical Formaldehyde Sensor NE4-HCHO-S

~ Industrial Use~

(1) Design Features

High Sensitivity Stability High Reliability Linearity Low Power Consumption for Battery Operation

(2) Specifications

[Sensitivity Characteristics]

Detection Gas	Formaldehyde
Detection Range	0 ~ 10 ppm
Maximum Overload	50 ppm
Output Signal	500 ± 150 nA/ppm
Repeatability	± 5 %
Typical Baseline Range (pure air)	< ± 0.05 ppm
Typical Response Time (t ₉₀)	< 120 sec. (HCHO : 1 ppm)
Baseline Shift $(0 \sim 40^{\circ} \text{C})$	< 0.2 ppm
Expected Life Time	Over 1 year

[Operating Conditions]

Operating Temperature	$-20 \sim 50^{\circ} C$
Operating Humidity	15 ~90 % RH
Operating Pressure Range	1atm± 10 %
Recommended Load Resistor	10 Ω
Bias Voltage	Not required
Position Sensitivity	None
Recommended Storage Temp.	$0 \sim 20^{\circ} C$
Storage Life	Less than 6 months

[Physical Characteristics]

Case Material	РРО
Cap Color	Black
Weight	5 g (approx.)

[Appearance and Dimensions]

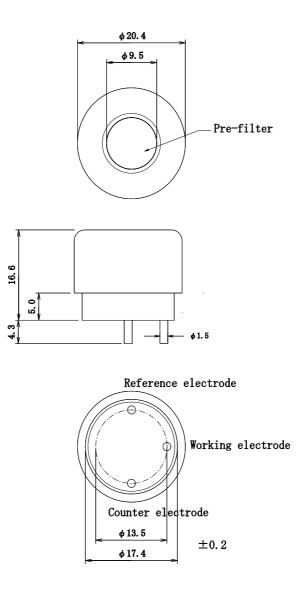


Fig.1 : Appearance and Dimensions of NE4-HCHO-S

(3) Characteristics

(3-1) Cross Sensitivity

Gas	Concentration (ppm)	Typical Formaldehyde Concentration (ppm) Equivalent
Formaldehyde	10	10
Hydrogen Sulfide	1	4
Carbon-monoxide	100	<6
Carbon-dioxide	5,000	0
Hydrogen	1000	<10
Sulfur-dioxide	10	<8
Chlorine	10	<-8
Methane	5,000	0
Nitric Oxide	10	<0.5
Nitrogen Dioxide	10	-7
Ammonia	100	0
Acetaldehyde	100	<2
Toluene	100	0
Xylene	100	0
Methanol	100	2
Ethanol	100	15

Table 1 : Cross Sensitivity of NE4-HCHO-S

(3-2) Temperature Dependency

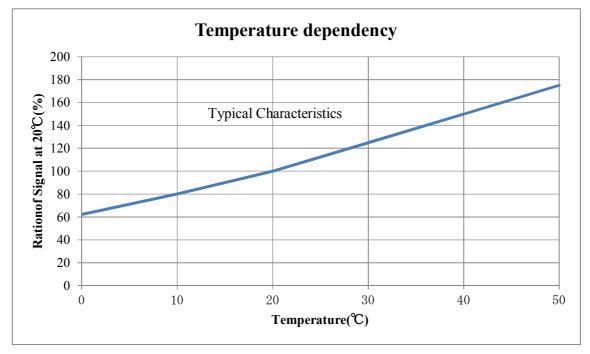


Fig. 2 : Typical Temperature Coefficient of NE4-HCHO-S

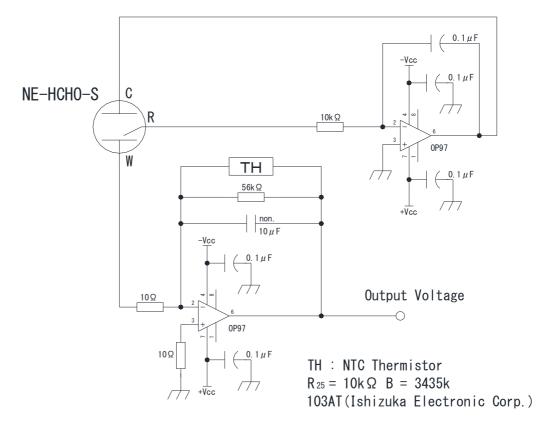


Fig. 3 : Basic Test Circuit for NE4-HCHO-S

- Circuit is test use only.
- Remove the short-pin before sensor is connected to the circuit.
- Apply the voltage to +Vcc and –Vcc at the same time.

[Notes]

- Use only within specified conditions.
- Sensor characteristics must be measured in clean air.
- Electrode pins must be correctly connected. Wrong connection does not allow correct functions.
- Do not apply voltage directly to electrode pins.
- Do not bend pins.
- Do not put excess vibration or shocks.
- If sensor housing is damaged or scratched, do not use.
- Do not blow organic solvents, paints, chemical agents, oils, or high concentration gases directly onto sensors.
- Do not solder to pins of sensor directly. Use exclusive sockets.
- Do not use contact grease when sensor is connected to the sockets.
- Do not disassemble or change any parts.
- If sensor is used under irregular atmosphere, contact us.

Tech.Inf.No.NE4-HCHO-S -180427